//
using System;

using System.Collections.Generic;

using System.Net;

using System.IO;

namespace FTP操作

{

 /// <summary>

 /// FTP客户端操作类

 /// </summary>

 public class FtpClient

 {

 #region 构造函数

 /// <summary>

 /// 创建FTP工具

 /// <para>

 /// 默认不使用SSL,使用二进制传输方式,使用被动模式

 /// </para>

 /// </summary>

 /// <param name="host">主机名称</param>

 /// <param name="userId">用户名</param>

 /// <param name="password">密码</param>

 public FtpClient(string host, string userId, string password)

 : this(host, userId, password, 21, null, false, true, true)

 {

 }

 /// <summary>

 /// 创建FTP工具

 /// </summary>

 /// <param name="host">主机名称</param>

 /// <param name="userId">用户名</param>

 /// <param name="password">密码</param>

 /// <param name="port">端口</param>

 /// <param name="enableSsl">允许Ssl</param>

 /// <param name="proxy">代理</param>

 /// <param name="useBinary">允许二进制</param>

 /// <param name="usePassive">允许被动模式</param>

 public FtpClient(string host, string userId, string password, int port, IWebProxy proxy, bool enableSsl, bool useBinary, bool usePassive)

 {

 this.userId = userId;

 this.password = password;

 if (host.ToLower().StartsWith("ftp://"))

 {

 this.host = host;

 }

 else

 {

 this.host = "ftp://" + host;

 }

 this.port = port;

 this.proxy = proxy;

 this.enableSsl = enableSsl;

 this.useBinary = useBinary;

 this.usePassive = usePassive;

 }

 #endregion

 #region 主机

 private string host = string.Empty;

 /// <summary>

 /// 主机

 /// </summary>

 public string Host

 {

 get

 {

 return this.host ?? string.Empty;

 }

 }

 #endregion

 #region 登录用户名

 private string userId = string.Empty;

 /// <summary>

 /// 登录用户名

 /// </summary>

 public string UserId

 {

 get

 {

 return this.userId;

 }

 }

 #endregion

 #region 密码

 private string password = string.Empty;

 /// <summary>

 /// 密码

 /// </summary>

 public string Password

 {

 get

 {

 return this.password;

 }

 }

 #endregion

 #region 代理

 IWebProxy proxy = null;

 /// <summary>

 /// 代理

 /// </summary>

 public IWebProxy Proxy

 {

 get

 {

 return this.proxy;

 }

 set

 {

 this.proxy = value;

 }

 }

 #endregion

 #region 端口

 private int port = 21;

 /// <summary>

 /// 端口

 /// </summary>

 public int Port

 {

 get

 {

 return port;

 }

 set

 {

 this.port = value;

 }

 }

 #endregion

 #region 设置是否允许Ssl

 private bool enableSsl = false;

 /// <summary>

 /// EnableSsl

 /// </summary>

 public bool EnableSsl

 {

 get

 {

 return enableSsl;

 }

 }

 #endregion

 #region 使用被动模式

 private bool usePassive = true;

 /// <summary>

 /// 被动模式

 /// </summary>

 public bool UsePassive

 {

 get

 {

 return usePassive;

 }

 set

 {

 this.usePassive = value;

 }

 }

 #endregion

 #region 二进制方式

 private bool useBinary = true;

 /// <summary>

 /// 二进制方式

 /// </summary>

 public bool UseBinary

 {

 get

 {

 return useBinary;

 }

 set

 {

 this.useBinary = value;

 }

 }

 #endregion

 #region 远端路径

 private string remotePath = "/";

 /// <summary>

 /// 远端路径

 /// <para>

 /// 返回FTP服务器上的当前路径(可以是 / 或 /a/../ 的形式)

 /// </para>

 /// </summary>

 public string RemotePath

 {

 get

 {

 return remotePath;

 }

 set

 {

 string result = "/";

 if (!string.IsNullOrEmpty(value) && value != "/")

 {

 result = "/" + value.TrimStart('/').TrimEnd('/') + "/";

 }

 this.remotePath = result;

 }

 }

 #endregion

 #region 创建一个FTP连接

 /// <summary>

 /// 创建一个FTP请求

 /// </summary>

 /// <param name="url">请求地址</param>

 /// <param name="method">请求方法</param>

 /// <returns>FTP请求</returns>

 private FtpWebRequest CreateRequest(string url, string method)

 {

 //建立连接

 FtpWebRequest request = (FtpWebRequest)WebRequest.Create(url);

 request.Credentials = new NetworkCredential(this.userId, this.password);

 request.Proxy = this.proxy;

 request.KeepAlive = false;//命令执行完毕之后关闭连接

 request.UseBinary = useBinary;

 request.UsePassive = usePassive;

 request.EnableSsl = enableSsl;

 request.Method = method;

 return request;

 }

 #endregion

 #region 上传一个文件到远端路径下

 /// <summary>

 /// 把文件上传到FTP服务器的RemotePath下

 /// </summary>

 /// <param name="localFile">本地文件信息</param>

 /// <param name="remoteFileName">要保存到FTP文件服务器上的名称</param>

 public bool Upload(FileInfo localFile, string remoteFileName)

 {

 bool result = false;

 if (localFile.Exists)

 {

 string url = Host.TrimEnd('/') + RemotePath + remoteFileName;

 FtpWebRequest request = CreateRequest(url, WebRequestMethods.Ftp.UploadFile);

 //上传数据

 using (Stream rs = request.GetRequestStream())

 using (FileStream fs = localFile.OpenRead())

 {

 byte[] buffer = new byte[4096];//4K

 int count = fs.Read(buffer, 0, buffer.Length);

 while (count > 0)

 {

 rs.Write(buffer, 0, count);

 count = fs.Read(buffer, 0, buffer.Length);

 }

 fs.Close();

 result = true;

 }

 return result;

 }

 throw new Exception(string.Format("本地文件不存在,文件路径:{0}", localFile.FullName));

 }

 #endregion

 #region 从FTP服务器上下载文件

 /// <summary>

 /// 从当前目录下下载文件

 /// <para>

 /// 如果本地文件存在,则从本地文件结束的位置开始下载.

 /// </para>

 /// </summary>

 /// <param name="serverName">服务器上的文件名称</param>

 /// <param name="localName">本地文件名称</param>

 /// <returns>返回一个值,指示是否下载成功</returns>

 public bool Download(string serverName, string localName)

 {

 bool result = false;

 using (FileStream fs = new FileStream(localName, FileMode.OpenOrCreate)) //创建或打开本地文件

 {

 //建立连接

 string url = Host.TrimEnd('/') + RemotePath + serverName;

 FtpWebRequest request = CreateRequest(url, WebRequestMethods.Ftp.DownloadFile);

 request.ContentOffset = fs.Length;

 using (FtpWebResponse response = (FtpWebResponse)request.GetResponse())

 {

 fs.Position = fs.Length;

 byte[] buffer = new byte[4096];//4K

 int count = response.GetResponseStream().Read(buffer, 0, buffer.Length);

 while (count > 0)

 {

 fs.Write(buffer, 0, count);

 count = response.GetResponseStream().Read(buffer, 0, buffer.Length);

 }

 response.GetResponseStream().Close();

 }

 result = true;

 }

 return result;

 }

 #endregion

 #region 重命名FTP服务器上的文件

 /// <summary>

 /// 文件更名

 /// </summary>

 /// <param name="oldFileName">原文件名</param>

 /// <param name="newFileName">新文件名</param>

 /// <returns>返回一个值,指示更名是否成功</returns>

 public bool Rename(string oldFileName, string newFileName)

 {

 bool result = false;

 //建立连接

 string url = Host.TrimEnd('/') + RemotePath + oldFileName;

 FtpWebRequest request = CreateRequest(url, WebRequestMethods.Ftp.Rename);

 request.RenameTo = newFileName;

 using (FtpWebResponse response = (FtpWebResponse)request.GetResponse())

 {

 result = true;

 }

 return result;

 }

 #endregion

 #region 从当前目录下获取文件列表

 /// <summary>

 /// 获取当前目录下文件列表

 /// </summary>

 /// <returns></returns>

 public List<string> GetFileList()

 {

 List<string> result = new List<string>();

 //建立连接

 string url = Host.TrimEnd('/') + RemotePath;

 FtpWebRequest request = CreateRequest(url, WebRequestMethods.Ftp.ListDirectory);

 using (FtpWebResponse response = (FtpWebResponse)request.GetResponse())

 {

 StreamReader reader = new StreamReader(response.GetResponseStream(), System.Text.Encoding.Default);//中文文件名

 string line = reader.ReadLine();

 while (line != null)

 {

 result.Add(line);

 line = reader.ReadLine();

 }

 }

 return result;

 }

 #endregion

 #region 从FTP服务器上获取文件和文件夹列表

 /// <summary>

 /// 获取详细列表

 /// </summary>

 /// <returns></returns>

 public List<string> GetFileDetails()

 {

 List<string> result = new List<string>();

 //建立连接

 string url = Host.TrimEnd('/') + RemotePath;

 FtpWebRequest request = CreateRequest(url, WebRequestMethods.Ftp.ListDirectoryDetails);

 using (FtpWebResponse response = (FtpWebResponse)request.GetResponse())

 {

 StreamReader reader = new StreamReader(response.GetResponseStream(), System.Text.Encoding.Default);//中文文件名

 string line = reader.ReadLine();

 while (line != null)

 {

 result.Add(line);

 line = reader.ReadLine();

 }

 }

 return result;

 }

 #endregion

 #region 从FTP服务器上删除文件

 /// <summary>

 /// 删除FTP服务器上的文件

 /// </summary>

 /// <param name="fileName">文件名称</param>

 /// <returns>返回一个值,指示是否删除成功</returns>

 public bool DeleteFile(string fileName)

 {

 bool result = false;

 //建立连接

 string url = Host.TrimEnd('/') + RemotePath + fileName;

 FtpWebRequest request = CreateRequest(url, WebRequestMethods.Ftp.DeleteFile);

 using (FtpWebResponse response = (FtpWebResponse)request.GetResponse())

 {

 result = true;

 }

 return result;

 }

 #endregion

 #region 在FTP服务器上创建目录

 /// <summary>

 /// 在当前目录下创建文件夹

 /// </summary>

 /// <param name="dirName">文件夹名称</param>

 /// <returns>返回一个值,指示是否创建成功</returns>

 public bool MakeDirectory(string dirName)

 {

 bool result = false;

 //建立连接

 string url = Host.TrimEnd('/') + RemotePath + dirName;

 FtpWebRequest request = CreateRequest(url, WebRequestMethods.Ftp.MakeDirectory);

 using (FtpWebResponse response = (FtpWebResponse)request.GetResponse())

 {

 result = true;

 }

 return result;

 }

 #endregion

 #region 从FTP服务器上删除目录

 /// <summary>

 /// 删除文件夹

 /// </summary>

 /// <param name="dirName">文件夹名称</param>

 /// <returns>返回一个值,指示是否删除成功</returns>

 public bool DeleteDirectory(string dirName)

 {

 bool result = false;

 //建立连接

 string url = Host.TrimEnd('/') + RemotePath + dirName;

 FtpWebRequest request = CreateRequest(url, WebRequestMethods.Ftp.RemoveDirectory);

 using (FtpWebResponse response = (FtpWebResponse)request.GetResponse())

 {

 result = true;

 }

 return result;

 }

 #endregion

 #region 从FTP服务器上获取文件大小

 /// <summary>

 /// 获取文件大小

 /// </summary>

 /// <param name="fileName"></param>

 /// <returns></returns>

 public long GetFileSize(string fileName)

 {

 long result = 0;

 //建立连接

 string url = Host.TrimEnd('/') + RemotePath + fileName;

 FtpWebRequest request = CreateRequest(url, WebRequestMethods.Ftp.GetFileSize);

 using (FtpWebResponse response = (FtpWebResponse)request.GetResponse())

 {

 result = response.ContentLength;

 }

 return result;

 }

 #endregion

 #region 给FTP服务器上的文件追加内容

 /// <summary>

 /// 给FTP服务器上的文件追加内容

 /// </summary>

 /// <param name="localFile">本地文件</param>

 /// <param name="remoteFileName">FTP服务器上的文件</param>

 /// <returns>返回一个值,指示是否追加成功</returns>

 public bool Append(FileInfo localFile, string remoteFileName)

 {

 if (localFile.Exists)

 {

 using (FileStream fs = new FileStream(localFile.FullName, FileMode.Open))

 {

 return Append(fs, remoteFileName);

 }

 }

 throw new Exception(string.Format("本地文件不存在,文件路径:{0}", localFile.FullName));

 }

 /// <summary>

 /// 给FTP服务器上的文件追加内容

 /// </summary>

 /// <param name="stream">数据流(可通过设置偏移来实现从特定位置开始上传)</param>

 /// <param name="remoteFileName">FTP服务器上的文件</param>

 /// <returns>返回一个值,指示是否追加成功</returns>

 public bool Append(Stream stream, string remoteFileName)

 {

 bool result = false;

 if (stream != null && stream.CanRead)

 {

 //建立连接

 string url = Host.TrimEnd('/') + RemotePath + remoteFileName;

 FtpWebRequest request = CreateRequest(url, WebRequestMethods.Ftp.AppendFile);

 using (Stream rs = request.GetRequestStream())

 {

 //上传数据

 byte[] buffer = new byte[4096];//4K

 int count = stream.Read(buffer, 0, buffer.Length);

 while (count > 0)

 {

 rs.Write(buffer, 0, count);

 count = stream.Read(buffer, 0, buffer.Length);

 }

 result = true;

 }

 }

 return result;

 }

 #endregion

 #region 获取FTP服务器上的当前路径

 /// <summary>

 /// 获取FTP服务器上的当前路径

 /// </summary>

 public string CurrentDirectory

 {

 get

 {

 string result = string.Empty;

 string url = Host.TrimEnd('/') + RemotePath;

 FtpWebRequest request = CreateRequest(url, WebRequestMethods.Ftp.PrintWorkingDirectory);

 using (FtpWebResponse response = (FtpWebResponse)request.GetResponse())

 {

 string temp = response.StatusDescription;

 int start = temp.IndexOf('"') + 1;

 int end = temp.LastIndexOf('"');

 if (end >= start)

 {

 result = temp.Substring(start, end - start);

 }

 }

 return result;

 }

 }

 #endregion

 #region 检查当前路径上是否存在某个文件

 /// <summary>

 /// 检查文件是否存在

 /// </summary>

 /// <param name="fileName">要检查的文件名</param>

 /// <returns>返回一个值,指示要检查的文件是否存在</returns>

 public bool CheckFileExist(string fileName)

 {

 bool result = false;

 if (fileName != null && fileName.Trim().Length > 0)

 {

 fileName = fileName.Trim();

 List<string> files = GetFileList();

 if (files != null && files.Count > 0)

 {

 foreach (string file in files)

 {

 if (file.ToLower() == fileName.ToLower())

 {

 result = true;

 break;

 }

 }

 }

 }

 return result;

 }

 #endregion

 }

}

/*//

FTP全状态码查询词典

1xx - 肯定的初步答复

这些状态代码指示一项操作已经成功开始，但客户端希望在继续操作新命令前得到另一个答复。 • 110 重新启动标记答复。

• 120 服务已就绪，在 nnn 分钟后开始。

• 125 数据连接已打开，正在开始传输。

• 150 文件状态正常，准备打开数据连接。

2xx - 肯定的完成答复

一项操作已经成功完成。客户端可以执行新命令。 • 200 命令确定。

• 202 未执行命令，站点上的命令过多。

• 211 系统状态，或系统帮助答复。

• 212 目录状态。

• 213 文件状态。

• 214 帮助消息。

• 215 NAME 系统类型，其中，NAME 是 Assigned Numbers 文档中所列的正式系统名称。

• 220 服务就绪，可以执行新用户的请求。

• 221 服务关闭控制连接。如果适当，请注销。

• 225 数据连接打开，没有进行中的传输。

• 226 关闭数据连接。请求的文件操作已成功（例如，传输文件或放弃文件）。

• 227 进入被动模式 (h1,h2,h3,h4,p1,p2)。

• 230 用户已登录，继续进行。

• 250 请求的文件操作正确，已完成。

• 257 已创建“PATHNAME”。

3xx - 肯定的中间答复

该命令已成功，但服务器需要更多来自客户端的信息以完成对请求的处理。 • 331 用户名正确，需要密码。

• 332 需要登录帐户。

• 350 请求的文件操作正在等待进一步的信息。

4xx - 瞬态否定的完成答复

该命令不成功，但错误是暂时的。如果客户端重试命令，可能会执行成功。 • 421 服务不可用，正在关闭控制连接。如果服务确定它必须关闭，将向任何命令发送这一应答。

• 425 无法打开数据连接。

• 426 Connection closed; transfer aborted.

• 450 未执行请求的文件操作。文件不可用（例如，文件繁忙）。

• 451 请求的操作异常终止：正在处理本地错误。

• 452 未执行请求的操作。系统存储空间不够。

5xx - 永久性否定的完成答复

该命令不成功，错误是永久性的。如果客户端重试命令，将再次出现同样的错误。 • 500 语法错误，命令无法识别。这可能包括诸如命令行太长之类的错误。

• 501 在参数中有语法错误。

• 502 未执行命令。

• 503 错误的命令序列。

• 504 未执行该参数的命令。

• 530 未登录。

• 532 存储文件需要帐户。

• 550 未执行请求的操作。文件不可用（例如，未找到文件，没有访问权限）。

• 551 请求的操作异常终止：未知的页面类型。

• 552 请求的文件操作异常终止：超出存储分配（对于当前目录或数据集）。

• 553 未执行请求的操作。不允许的文件名。

常见的 FTP 状态代码及其原因

• 150 - FTP 使用两个端口：21 用于发送命令，20 用于发送数据。状态代码 150 表示服务器准备在端口 20 上打开新连接，发送一些数据。

• 226 - 命令在端口 20 上打开数据连接以执行操作，如传输文件。该操作成功完成，数据连接已关闭。

• 230 - 客户端发送正确的密码后，显示该状态代码。它表示用户已成功登录。

• 331 - 客户端发送用户名后，显示该状态代码。无论所提供的用户名是否为系统中的有效帐户，都将显示该状态代码。

• 426 - 命令打开数据连接以执行操作，但该操作已被取消，数据连接已关闭。

• 530 - 该状态代码表示用户无法登录，因为用户名和密码组合无效。如果使用某个用户帐户登录，可能键入错误的用户名或密码，也可能选择只允许匿名访问。如果使用匿名帐户登录，IIS 的配置可能拒绝匿名访问。

• 550 - 命令未被执行，因为指定的文件不可用。例如，要 GET 的文件并不存在，或试图将文件 PUT 到您没有写入权限的目录。

*///
//操作用例
 private void ftp_op1()

 {

 WebClient wc = new WebClient();

 //wc.Credentials = new NetworkCredential("pkm", "123456");//没有加就是匿名用户

 wc.DownloadFile("ftp://127.0.0.1/金山毒霸账号.txt", "c:/金山毒霸账号.txt");

 // MessageBox.Show("文件(金山毒霸账号.txt)下载成功！");

 wc.UploadFile("ftp://127.0.0.1/金山毒霸账号.txt", "c:/金山毒霸账号.txt");//要有上传权限！

 }

 private void ftp_op2()

 {

 FtpClient fc = new FtpClient("127.0.0.1", "pkm", "123456");

 fc.Download("学习进度.txt.lnk", "c:/学习进度" + DateTime.Now.ToString("yyyy_MM_dd").Replace(" ", "") + ".lnk");

 }
